Cytokine-Activated Endothelial Cells Delay Neutrophil Apoptosis in Vitro and in Vivo
نویسندگان
چکیده
The activation of endothelium is important in recruiting neutrophils to sites of inflammation and in modulating their function. We demonstrate that conditioned medium from cultured, activated endothelial cells acts to significantly delay the constitutive apoptosis of neutrophils, resulting in their enhanced survival and increased phagocytic function. The antiapoptotic activity is, in part, attributable to granulocyte/macrophage colony-stimulating factor (GM-CSF) secreted by activated endothelial cells. The in vivo relevance of these findings was investigated in a cytokine-induced model of acute meningitis in mice. Peripheral blood neutrophils (PBNs) from mice with meningitis exhibited a delay in apoptosis compared with untreated mice. Furthermore, neutrophils recovered from the inflamed cerebrospinal fluid (CSF) exhibited enhanced survival compared with neutrophils isolated from the peripheral blood of the same animals. In unchallenged GM-CSF-deficient mice, the apoptosis of circulating PBNs was similar to wild-type animals; however, after cytokine-induced meningitis, the delay in neutrophil apoptosis typically observed in wild-type mice was attenuated. In contrast, the apoptosis of neutrophils recovered from the CSF of mice of both genotypes was comparable. Taken together, these studies suggest that neutrophil apoptosis is regulated during an inflammatory response, in both intravascular and extravascular compartments. GM-CSF released by activated endothelium can act to increase neutrophil survival and function in the peripheral blood, whereas other factor(s) appear to perform this function in the extravascular space.
منابع مشابه
Cytokine-activated Endothelial Cells Delay Neutrophil Apoptosis In Vitro and In Vivo: A Role for Granulocyte/Macrophage Colony-stimulating Factor
The activation of endothelium is important in recruiting neutrophils to sites of inflammation and in modulating their function. We demonstrate that conditioned medium from cultured, activated endothelial cells acts to significantly delay the constitutive apoptosis of neutrophils, resulting in their enhanced survival and increased phagocytic function. The antiapoptotic activity is, in part, attr...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملAdipose Stem Cells as a Feeder Layer Reduce Apoptosis and p53 Gene Expression of Human Expanded Hematopoietic Stem Cells Derived from Cord Blood
Introduction: Human hematopoietic stem cells (hHSCs) have been used for transplantation in hematologic failures. Because the number of hHSCs per cord blood unit is limited, the expansion of these cells is important for clinical application. It has been reported that cytokines and feeder layer provide a perspective to in vitro expansion of hHSCs. In this regard, cord blood CD34+ cells ex...
متن کاملAdiponectin alleviate blood hypercoagulability via inhibiting endothelial cell apoptosis induced by oxidative stress in septic rats
Objective(s): The purpose of this study was to detect the protective effects of adiponectin on coagulation dysfunction and its mechanism in sepsis of rats.Materials and Methods: The experimental samples were composed of sham group, model group that was underwent cecal ligation and puncture (CLP) and three adiponectin treatment groups that treated by adiponectin with different dose (72 μg/kg, ...
متن کاملGene profiling of in vitro and in vivo models of delayed neutrophil apoptosis: a common pathway?
Mechanisms responsible for the termination of an inflammatory response include the activation of a genetic programme of cellular suicide termed apoptosis, which leads to the elimination of the cellular effectors of acute inflammation, particularly the neutrophil. However, delays in this response result in the persistence of inflammation and the development of inflammatory disorders. Understandi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Experimental Medicine
دوره 190 شماره
صفحات -
تاریخ انتشار 1999